Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Am J Transl Res ; 15(5): 3060-3066, 2023.
Article in English | MEDLINE | ID: covidwho-20245356

ABSTRACT

OBJECTIVE: The pandemic of Coronavirus Disease 2019 (COVID-19) has drastically changed the daily lifestyle of people around the world. This paper aims to analyze and summarize the impact of the COVID-19 pandemic on poor lifestyles and mental health. MATERIALS AND METHODS: A comprehensive examination of the existing literature was conducted, wherein a description was provided regarding the poor lifestyles and mental health issues of individuals during the COVID-19 pandemic. RESULTS: The available literature delineates the impact of the COVID-19 pandemic on unhealthy lifestyle patterns, which encompasses reduced physical activity, increased sedentary behavior, augmented screen time, disturbed work and sleep schedules, more smoking and alcohol consumption, and mental health disorders, such as anxiety and depression. CONCLUSIONS: It is imperative for both governments and individuals to be cognizant of the detrimental impact of the COVID-19 pandemic on lifestyle as well as physical and mental health. Prompt interventions must be implemented to address these issues.

2.
Virol J ; 20(1): 114, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20244820

ABSTRACT

BACKGROUND: COVID-19 infection continues all over the world, causing serious physical and psychological impacts to patients. Patients with COVID-19 infection suffer from various negative emotional experiences such as anxiety, depression, mania, and alienation, which seriously affect their normal life and is detrimental to the prognosis. Our study is aimed to investigate the effect of psychological capital on alienation among patients with COVID-19 and the mediating role of social support in this relationship. METHODS: The data were collected in China by the convenient sampling. A sample of 259 COVID-19 patients completed the psychological capital, social support and social alienation scale and the structural equation model was adopted to verify the research hypotheses. RESULTS: Psychological capital was significantly and negatively related to the COVID-19 patients' social alienation (p < .01). And social support partially mediated the correlation between psychological capital and patients' social alienation (p < .01). CONCLUSION: Psychological capital is critical to predicting COVID-19 patients' social alienation. Social support plays an intermediary role and explains how psychological capital alleviates the sense of social alienation among patients with COVID-19 infection.


Subject(s)
COVID-19 , Social Capital , Humans , Social Support , Anxiety , China
3.
Int J Mol Sci ; 24(11)2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20238934

ABSTRACT

Post-intensive care syndrome (PICS) poses a serious threat to the health of intensive care unit (ICU) survivors, and effective treatment options are currently lacking. With increasing survival rates of ICU patients worldwide, there is a rising interest in developing methods to alleviate PICS symptoms. This study aimed to explore the potential of using Hyaluronan (HA) with different molecular weights as potential drugs for treating PICS in mice. Cecal ligation and puncture (CLP) were used to establish a PICS mice model, and high molecular weight HA (HMW-HA) or oligo-HA were used as therapeutic agents. Pathological and physiological changes of PICS mice in each group were monitored. 16S rRNA sequencing was performed to dissect gut microbiota discrepancies. The results showed that both molecular weights of HA could increase the survival rate of PICS mice at the experimental endpoint. Specifically, 1600 kDa-HA can alleviate PICS in a short time. In contrast, 3 kDa-HA treatment decreased PICS model survivability in the early stages of the experiment. Further, via 16S rRNA sequence analysis, we observed the changes in the gut microbiota in PICS mice, thereby impairing intestinal structure and increasing inflammation. Additionally, both types of HA can reverse this change. Moreover, compared to 1600 kDa-HA, 3 kDa-HA can significantly elevate the proportion of probiotics and reduce the abundance of pathogenic bacteria (Desulfovibrionaceae and Enterobacteriaceae). In conclusion, HA holds the advantage of being a potential therapeutic drug for PICS, but different molecular weights can lead to varying effects. Moreover, 1600 kDa-HA showed promise as a protective agent in PICS mice, and caution should be taken to its timing when considering using 3 kDa-HA.


Subject(s)
Gastrointestinal Microbiome , Hyaluronic Acid , Mice , Animals , Molecular Weight , RNA, Ribosomal, 16S/genetics
4.
Commun Med (Lond) ; 3(1): 75, 2023 May 26.
Article in English | MEDLINE | ID: covidwho-20233191

ABSTRACT

BACKGROUND: Since the beginning of the COVID-19 pandemic, several variants of concern (VOC) have emerged for which there is evidence of an increase in transmissibility, more severe disease, and/or reduced vaccine effectiveness. Effective COVID-19 vaccine strategies are required to achieve broad protective immunity against current and future VOC. METHODS: We conducted immunogenicity and challenge studies in macaques and hamsters using a bivalent recombinant vaccine formulation containing the SARS-CoV-2 prefusion-stabilized Spike trimers of the ancestral D614 and the variant Beta strains with AS03 adjuvant (CoV2 preS dTM-AS03) in a primary immunization setting. RESULTS: We show that a primary immunization with the bivalent CoV2 preS dTM-AS03 elicits broader and durable (1 year) neutralizing antibody responses against VOC including Omicron BA.1 and BA.4/5, and SARS-CoV-1 as compared to the ancestral D614 or Beta variant monovalent vaccines in naïve non-human primates. In addition, the bivalent formulation confers protection against viral challenge with SARS-CoV-2 prototype D614G strain as well as Alpha and Beta variant strains in hamsters. CONCLUSIONS: Our findings demonstrate the potential of a Beta-containing bivalent CoV2 preS dTM-AS03 formulation to provide broad and durable immunogenicity, as well as protection against VOC in naïve populations.


SARS-CoV-2 has changed over time, resulting in different forms of the virus called variants. These variants compromise the protection offered by the COVID-19 vaccines, which trigger an immune response against the viral Spike protein that allows the virus to attach and infect human cells, since their spike proteins are different. Here, we developed and tested a vaccine containing two different Spike proteins, one from the original Wuhan strain and another from the Beta variant. In macaques, the vaccine leads to the production of antibodies able to stop all variants tested from infecting human cells, including Omicron, with stable levels over one year. In hamsters, the vaccine protected against infection with the ancestral virus and the Alpha and Beta variants. Our findings have important implications for vaccine control of existing and future SARS-CoV-2 variants of concern.

6.
Cells ; 12(8)2023 04 20.
Article in English | MEDLINE | ID: covidwho-2299159

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a SARS-like coronavirus, continues to produce mounting infections and fatalities all over the world. Recent data point to SARS-CoV-2 viral infections in the human testis. As low testosterone levels are associated with SARS-CoV-2 viral infections in males and human Leydig cells are the main source of testosterone, we hypothesized that SARS-CoV-2 could infect human Leydig cells and impair their function. We successfully detected SARS-CoV-2 nucleocapsid in testicular Leydig cells of SARS-CoV-2-infected hamsters, providing evidence that Leydig cells can be infected with SARS-CoV-2. We then employed human Leydig-like cells (hLLCs) to show that the SARS-CoV-2 receptor angiotensin-converting enzyme 2 is highly expressed in hLLCs. Using a cell binding assay and a SARS-CoV-2 spike-pseudotyped viral vector (SARS-CoV-2 spike pseudovector), we showed that SARS-CoV-2 could enter hLLCs and increase testosterone production by hLLCs. We further combined the SARS-CoV-2 spike pseudovector system with pseudovector-based inhibition assays to show that SARS-CoV-2 enters hLLCs through pathways distinct from those of monkey kidney Vero E6 cells, a typical model used to study SARS-CoV-2 entry mechanisms. We finally revealed that neuropilin-1 and cathepsin B/L are expressed in hLLCs and human testes, raising the possibility that SARS-CoV-2 may enter hLLCs through these receptors or proteases. In conclusion, our study shows that SARS-CoV-2 can enter hLLCs through a distinct pathway and alter testosterone production.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , SARS-CoV-2/metabolism , COVID-19/metabolism , Testosterone/metabolism , Leydig Cells/metabolism , Testis/metabolism , Peptidyl-Dipeptidase A/metabolism
7.
Vet Microbiol ; 281: 109743, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2304272

ABSTRACT

Infection with porcine epidemic diarrhea virus (PEDV) causes severe watery diarrhea in newborn piglets, leading to substantial financial losses for the swine industry. In this study, we screened small molecule drugs targeting 3 C-like protease (3CLpro) by molecular docking, and further evaluated the antiviral activity of the screened drugs against PEDV. Results showed that octyl gallate (OG), a widely used food additive, exhibited strong binding affinity with the 3CLpro active sites of PEDV. Bio-layer interferometry and fluorescence resonance energy transfer revealed that OG directly interacts with PEDV 3CLpro (KD = 549 nM) and inhibits 3CLpro activity (IC50 = 22.15 µM). OG showed a strong inhibition of PEDV replication in vitro. Virus titers were decreased by 0.58 and 0.71 log10 TCID50/mL for the CV777 and HM2017 strains, respectively. In vivo, all piglets in the PEDV-infected group died at 48 h post-infection (hpi), while 75% of piglets in the OG treatment group showed significant relief from the clinical symptoms, pathological damage, and viral loads in the jejunum and ileum. Moreover, the western blotting results showed that OG also has strong antiviral activity against other swine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV). Our findings revealed that OG could be developed as a novel antiviral drug against PEDV. The OG exhibited a potential broad-spectrum antiviral drug for control of other swine enteric coronaviruses.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/physiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Peptide Hydrolases , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Molecular Docking Simulation , Swine Diseases/drug therapy
8.
Animals : an open access journal from MDPI ; 13(5), 2023.
Article in English | EuropePMC | ID: covidwho-2277237

ABSTRACT

Simple Summary Porcine epidemic diarrhea virus (PEDV) is an α coronavirus that causes major disease outbreaks, producing up to 100% mortality rates in piglets during the first 7 days after birth. In this study, we used microcapsules with inactivated PEDV fed to mice by oral administration to improve the effectiveness of the oral delivery method for protection against PEDV infection, and avoided digestive degradation in the acidic environment of the stomach. In addition, the PEDV microcapsules displayed remarkable storage tolerance to maintain the quality of the PEDV antigen. The PEDV microcapsules delivered the inactivated virus into the gut, stimulating the specific mucosal immune response in mice, which could directly neutralize the enterovirus. Abstract The porcine epidemic diarrhea virus, PEDV, which causes diarrhea, vomiting and death in piglets, causes huge economic losses. Therefore, understanding how to induce mucosal immune responses in piglets is essential in the mechanism and application against PEDV infection with mucosal immunity. A method of treatment in our research was used to make an oral vaccine that packaged the inactive PEDV with microencapsulation, which consisted of sodium alginate and chitosan, and adapted the condition of the gut in mice. The in vitro release experiment of microcapsules showed that inactive PEDV was not only easily released in saline and acid solutions but also had an excellent storage tolerance, and was suitable for use as an oral vaccine. Interestingly, both experimental groups with different doses of inactive virus enhanced the secretion of specific antibodies in the serum and intestinal mucus, which caused the effective neutralization against PEDV in the Vero cell by both IgG and IgA, respectively. Moreover, the microencapsulation could stimulate the differentiation of CD11b+ and CD11c+ dendritic cells, which means that the microencapsulation was also identified as an oral adjuvant to help phagocytosis of dendritic cells in mice. Flow cytometry revealed that the B220+ and CD23+ of the B cells could significantly increase antibody production with the stimulation from the antigens' PEDV groups, and the microencapsulation could also increase the cell viability of B cells, stimulating the secretion of antibodies such as IgG and IgA in mice. In addition, the microencapsulation promoted the expression of anti-inflammatory cytokines, such as IL-10 and TGF-β. Moreover, proinflammatory cytokines, such as IL-1, TNF-α, and IL-17, were inhibited by alginate and chitosan in the microencapsulation groups compared with the inactivated PEDV group. Taken together, our results demonstrate that the microparticle could play the role of mucosal adjuvant, and release inactivated PEDV in the gut, which can effectively stimulate mucosal and systemic immune responses in mice.

9.
Front Immunol ; 14: 1107639, 2023.
Article in English | MEDLINE | ID: covidwho-2261428

ABSTRACT

Neutralizing antibody (NtAb) levels are key indicators in the development and evaluation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines. Establishing a unified and reliable WHO International Standard (IS) for NtAb is crucial for the calibration and harmonization of NtAb detection assays. National and other WHO secondary standards are key links in the transfer of IS to working standards but are often overlooked. The Chinese National Standard (NS) and WHO IS were developed by China and WHO in September and December 2020, respectively, the application of which prompted and coordinated sero-detection of vaccine and therapy globally. Currently, a second-generation Chinese NS is urgently required owing to the depletion of stocks and need for calibration to the WHO IS. The Chinese National Institutes for Food and Drug Control (NIFDC) developed two candidate NSs (samples 33 and 66-99) traced to the IS according to the WHO manual for the establishment of national secondary standards through a collaborative study of nine experienced labs. Either NS candidate can reduce the systematic error among different laboratories and the difference between the live virus neutralization (Neut) and pseudovirus neutralization (PsN) methods, ensuring the accuracy and comparability of NtAb test results among multiple labs and methods, especially for samples 66-99. At present, samples 66-99 have been approved as the second-generation NS, which is the first NS calibrated tracing to the IS with 580 (460-740) International Units (IU)/mL and 580 (520-640) IU/mL by Neut and PsN, respectively. The use of standards improves the reliability and comparability of NtAb detection, ensuring the continuity of the use of the IS unitage, which effectively promotes the development and application of SARS-CoV-2 vaccines in China.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Calibration , Reproducibility of Results , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , China , World Health Organization
10.
Psychogeriatrics ; 23(3): 450-457, 2023 May.
Article in English | MEDLINE | ID: covidwho-2269274

ABSTRACT

BACKGROUND: The prevalence of anxiety and other psychological disorders has increased during the COVID-19 pandemic, especially among the elderly. Anxiety and metabolic syndrome (MetS) may aggravate each other. This study further clarified the correlation between the two. METHODS: Adopting a convenience sampling method, this study investigated 162 elderly people over 65 years of age in Fangzhuang Community, Beijing. All participants provided baseline data on sex, age, lifestyle, and health status. The Hamilton Anxiety Scale (HAMA) was used to assess anxiety. Blood samples, abdominal circumference, and blood pressure were used to diagnose MetS. The elderly were divided into MetS and control groups according to the diagnosis of MetS. Differences in anxiety between the two groups were analysed and further stratified by age and gender. Multivariate logistic regression analysis was used to analyse the possible risk factors for MetS. RESULTS: Compared with the control group, anxiety scores of the MetS group were statistically higher (Z = 4.78, P < 0.001). There was a significant correlation between anxiety levels and MetS (r = 0.353, P < 0.001). Multivariate logistic regression revealed that anxiety (possible anxiety vs no anxiety: odds ratio [OR] = 2.982, 95% confidence interval [CI] 1.295-6.969; definite anxiety vs no anxiety: OR = 14.573, 95%CI 3.675-57.788; P < 0.001) and BMI (OR = 1.504, 95% CI 1.275-1.774; P < 0.001) were possible risk factors for MetS. CONCLUSION: The elderly with MetS had higher anxiety scores. Anxiety may be a potential risk factor for MetS, which provides a new perspective on anxiety and MetS.


Subject(s)
COVID-19 , Metabolic Syndrome , Humans , Aged , Metabolic Syndrome/epidemiology , Cross-Sectional Studies , Pandemics , Risk Factors , Prevalence
11.
BMC Nephrol ; 24(1): 36, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2268744

ABSTRACT

BACKGROUND: More attention has been put on the relationship between pediatric glomerular disease and respiratory tract virus infection. Children with glomerular illness, however, are uncommonly found to have biopsy-proven pathological evidence of viral infection. The purpose of this study is to determine whether and what kind of respiratory viruses are found in renal biopsy from glomerular disorders. METHODS: We used a multiplex PCR to identify a wide range of respiratory tract viruses in the renal biopsy samples (n = 45) from children with glomerular disorders and a specific PCR to verify their expression. RESULTS: These case series included 45 of 47 renal biopsy specimens, with 37.8% of male and 62.2% of female patients. Indications for a kidney biopsy were present in all of the individuals. In 80% of the samples, respiratory syncytial virus was discovered. Following that, the RSV subtypes in several pediatric renal disorders were found. There were 16 RSVA positives, 5 RSVB positives, and 15 RSVA/B positives, accounting for 44.4%, 13.9%, and 41.7%, respectively. Nephrotic syndrome samples made up 62.5% of RSVA positive specimens. The RSVA/B-positive was detected in all pathological histological types. CONCLUSIONS: Patients with glomerular disease exhibit respiratory tract viral expression in the renal tissues, especially respiratory syncytial virus. This research offers new information on the detection of respiratory tract viruses in renal tissue, which may facilitate the identification and treatment of pediatric glomerular diseases.


Subject(s)
Kidney Diseases , Pneumonia , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Child , Humans , Male , Female , Infant , Retrospective Studies , Virus Diseases/diagnosis , China/epidemiology , Respiratory System , Biopsy
12.
Biochem Genet ; 2023 Apr 05.
Article in English | MEDLINE | ID: covidwho-2268741

ABSTRACT

To integrate gene expression and DNA methylation data and find the potential role of DNA methylation in the invasion and replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We first conducted differential expression and methylation analysis between the coronavirus disease of 2019 (COVID-19) and healthy controls. FEM was employed to identify functional epigenetic modules, from which a diagnostic model for COVID-19 was built. SKA1 and WSB1 modules were identified, with SKA1 module enriched in COVID-19 replication and transcription, and WSB1 module related to ubiquitin-protein activity. The differentially expressed or differentially methylated genes in these two modules could be used to distinguish COVID-19 from healthy controls, with AUC reaching 1 and 0.98 for SKA1 and WSB1 modules, respectively. Two epigenetically activated genes (CENPM and KNL1) from the SKA1 module were upregulated in HPV- or HBV-positive tumor samples and were found to be significantly associated with the survival of tumor patients. In conclusion, the identified FEM modules and potential signatures play an essential role in the replication and transcription of coronavirus.

13.
Animals (Basel) ; 13(5)2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2277238

ABSTRACT

The porcine epidemic diarrhea virus, PEDV, which causes diarrhea, vomiting and death in piglets, causes huge economic losses. Therefore, understanding how to induce mucosal immune responses in piglets is essential in the mechanism and application against PEDV infection with mucosal immunity. A method of treatment in our research was used to make an oral vaccine that packaged the inactive PEDV with microencapsulation, which consisted of sodium alginate and chitosan, and adapted the condition of the gut in mice. The in vitro release experiment of microcapsules showed that inactive PEDV was not only easily released in saline and acid solutions but also had an excellent storage tolerance, and was suitable for use as an oral vaccine. Interestingly, both experimental groups with different doses of inactive virus enhanced the secretion of specific antibodies in the serum and intestinal mucus, which caused the effective neutralization against PEDV in the Vero cell by both IgG and IgA, respectively. Moreover, the microencapsulation could stimulate the differentiation of CD11b+ and CD11c+ dendritic cells, which means that the microencapsulation was also identified as an oral adjuvant to help phagocytosis of dendritic cells in mice. Flow cytometry revealed that the B220+ and CD23+ of the B cells could significantly increase antibody production with the stimulation from the antigens' PEDV groups, and the microencapsulation could also increase the cell viability of B cells, stimulating the secretion of antibodies such as IgG and IgA in mice. In addition, the microencapsulation promoted the expression of anti-inflammatory cytokines, such as IL-10 and TGF-ß. Moreover, proinflammatory cytokines, such as IL-1, TNF-α, and IL-17, were inhibited by alginate and chitosan in the microencapsulation groups compared with the inactivated PEDV group. Taken together, our results demonstrate that the microparticle could play the role of mucosal adjuvant, and release inactivated PEDV in the gut, which can effectively stimulate mucosal and systemic immune responses in mice.

14.
Nat Commun ; 14(1): 1309, 2023 03 10.
Article in English | MEDLINE | ID: covidwho-2275967

ABSTRACT

The rapid spread of the SARS-CoV-2 Omicron subvariants, despite the implementation of booster vaccination, has raised questions about the durability of protection conferred by current vaccines. Vaccine boosters that can induce broader and more durable immune responses against SARS-CoV-2 are urgently needed. We recently reported that our Beta-containing protein-based SARS-CoV-2 spike booster vaccine candidates with AS03 adjuvant (CoV2 preS dTM-AS03) elicited robust cross-neutralizing antibody responses at early timepoints against SARS-CoV-2 variants of concern in macaques primed with mRNA or protein-based subunit vaccine candidates. Here we demonstrate that the monovalent Beta vaccine with AS03 adjuvant induces durable cross-neutralizing antibody responses against the prototype strain D614G as well as variants Delta (B.1.617.2), Omicron (BA.1 and BA.4/5) and SARS-CoV-1, that are still detectable in all macaques 6 months post-booster. We also describe the induction of consistent and robust memory B cell responses, independent of the levels measured post-primary immunization. These data suggest that a booster dose with a monovalent Beta CoV2 preS dTM-AS03 vaccine can induce robust and durable cross-neutralizing responses against a broad spectrum of variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Vaccines , Broadly Neutralizing Antibodies , Protein Subunits , Macaca , Primates , Antibodies, Viral , Antibodies, Neutralizing
15.
J Intensive Med ; 2(2): 92-102, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-2253495

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) is an ongoing pandemic. Invasive mechanical ventilation (IMV) is essential for the management of COVID-19 with acute respiratory distress syndrome (ARDS). We aimed to assess the impact of compliance with a respiratory decision support system on the outcomes of patients with COVID-19-associated ARDS who required IMV. Methods: In this retrospective, single-center, case series study, patients with COVID-19-associated ARDS who required IMV at Zhongnan Hospital of Wuhan University, China, from January 8th, 2020, to March 24th, 2020, with the final follow-up date of April 20th, 2020, were included. Demographic, clinical, laboratory, imaging, and management information were collected and analyzed. Compliance with the respiratory support decision system was documented, and its relationship with 28-day mortality was evaluated. Results: The study included 46 COVID-19-associated ARDS patients who required IMV. The median age of the 46 patients was 68.5 years, and 31 were men. The partial pressure of arterial oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio at intensive care unit (ICU) admission was 104 mmHg. The median total length of IMV was 12.0 (interquartile range [IQR]: 6.0-27.3) days, and the median respiratory support decision score was 11.0 (IQR: 7.8-16.0). To 28 days after ICU admission, 18 (39.1%) patients died. Survivors had a significantly higher respiratory support decision score than non-survivors (15.0 [10.3-17.0] vs. 8.5 (6.0-10.3), P = 0.001). Using receiver operating characteristic (ROC) curve to assess the discrimination of respiratory support decision score to 28-day mortality, the area under the curve (AUC) was 0.796 (95% confidence interval [CI]: 0.657-0.934, P = 0.001) and the cut-off was 11.5 (sensitivity = 0.679, specificity = 0.889). Patients with a higher score (>11.5) were more likely to survive at 28 days after ICU admission (log-rank test, P < 0.001). Conclusions: For severe COVID-19-associated ARDS with IMV, following the respiratory support decision and assessing completion would improve the progress of ventilation. With a decision score of >11.5, the mortality at 28 days after ICU admission showed an obvious decrease.

16.
Comput Struct Biotechnol J ; 20: 6490-6500, 2022.
Article in English | MEDLINE | ID: covidwho-2282961

ABSTRACT

The cGAS-STING pathway, orchestrating complicated transcriptome-wide immune responses, is essential for host antiviral defense but can also drive immunopathology in severe COVID-19. Here, we performed time-course RNA-Seq experiments to dissect the transcriptome expression dynamics at the gene-isoform level after cGAS-STING pathway activation. The in-depth time-course transcriptome after cGAS-STING pathway activation within 12 h enabled quantification of 48,685 gene isoforms. By employing regression models, we obtained 13,232 gene isoforms with expression patterns significantly associated with the process of cGAS-STING pathway activation, which were named activation-associated isoforms. The combination of hierarchical and k-means clustering algorithms revealed four major expression patterns of activation-associated isoforms, including two clusters with increased expression patterns enriched in cell cycle, autophagy, antiviral innate-immune functions, and COVID-19 coronavirus disease pathway, and two clusters showing decreased expression pattern that mainly involved in ncRNA metabolism, translation process, and mRNA processing. Importantly, by merging four clusters of activation-associated isoforms, we identified three types of genes that underwent isoform usage alteration during the cGAS-STING pathway activation. We further found that genes exhibiting protein-coding and non-protein-coding gene isoform usage alteration were strongly enriched for the factors involved in innate immunity and RNA splicing. Notably, overexpression of an enriched splicing factor, EFTUD2, shifted transcriptome towards the cGAS-STING pathway activated status and promoted protein-coding isoform abundance of several key regulators of the cGAS-STING pathway. Taken together, our results revealed the isoform-level gene expression dynamics of the cGAS-STING pathway and uncovered novel roles of splicing factors in regulating cGAS-STING pathway mediated immune responses.

18.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.04.18.23288720

ABSTRACT

Background Persistence of physical symptoms after SARS-CoV-2 infection is a major public health concern, although evidence from large observational studies remain scarce. We aimed to assess the prevalence of physical symptoms in relation to acute illness severity up to more than 2-years after diagnosis of COVID-19. Methods This multinational study included 64 880 adult participants from Iceland, Sweden, Denmark, and Norway with self-reported data on COVID-19 and physical symptoms from April 2020 to August 2022. We compared the prevalence of 15 physical symptoms, measured by the Patient Health Questionnaire (PHQ-15), among individuals with or without a confirmed COVID-19 diagnosis, by acute illness severity, and by time since diagnosis. We additionally assessed the change in symptoms in a subset of Swedish adults with repeated measures, before and after COVID-19 diagnosis. Findings During up to 27 months of follow-up, 22 382 participants (34.5%) were diagnosed with COVID-19. Individuals who were diagnosed with COVID-19, compared to those not diagnosed, had an overall 37% higher prevalence of severe physical symptom burden (PHQ-15 score [≥] 15, adjusted prevalence ratio [PR] 1.37 [95% confidence interval [CI] 1.23-1.52]). The prevalence was associated with acute COVID-19 severity: individuals bedridden for seven days or longer presented with the highest prevalence (PR 2.25[1.85-2.74]), while individuals never bedridden presented with similar prevalence as individuals not diagnosed with COVID-19 (PR 0.92 [0.68-1.24]). The prevalence was statistically significantly elevated among individuals diagnosed with COVID-19 for eight of the fifteen measured symptoms: shortness of breath, chest pain, dizziness, heart racing, headaches, low energy/fatigue, trouble sleeping, and back pain. The analysis of repeated measurements rendered similar results as the main analysis. Interpretation These data suggest an elevated prevalence of some, but not all, physical symptoms during up to more than 2 years after diagnosis of COVID-19, particularly among individuals suffering a severe acute illness.


Subject(s)
Acute Disease , Headache , Dyspnea , Chest Pain , Dizziness , Back Pain , COVID-19 , Fatigue
19.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.28.23286559

ABSTRACT

Background. Little is known regarding the mental health impact of having a significant person (family member and/or close friend) with COVID-19 of different severity. Methods. The study included five prospective cohorts from four countries (Iceland, Norway, Sweden, and the UK) with self-reported data on COVID-19 and symptoms of depression and anxiety during March 2020-March 2022. We calculated the prevalence ratio (PR) of depression and anxiety in relation to having a significant person with COVID-19 and performed a longitudinal analysis in the Swedish cohort to describe the temporal patterns of the results. Results. 162,237 and 168,783 individuals were included in the analysis of depression and anxiety, respectively, of whom 24,718 and 27,003 reported a significant person with COVID- 19. Overall, the PR was 1.07 (95% CI: 1.05-1.10) for depression and 1.08 (95% CI: 1.03-1.13) for anxiety among significant others of COVID-19 patients. The respective PRs for depression and anxiety were 1.04 (95% CI: 1.01-1.07) and 1.03 (95% CI: 0.98-1.07) if the significant person was never hospitalized, 1.15 (95% CI: 1.08-1.23) and 1.24 (95% CI: 1.14-1.34) if the patient was hospitalized, 1.42 (95% CI: 1.27-1.57) and 1.45 (95% CI: 1.31-1.60) if admitted to the ICU, and 1.34 (95% CI: 1.22-1.46) and 1.36 (95% CI: 1.22-1.51) if the significant person died. Individuals of hospitalized, ICU admitted, or deceased patients showed higher prevalence of depression and anxiety during the entire 12 months after the COVID-19 diagnosis of the significant person. Conclusions. Close friends and family members of critically ill COVID-19 patients show elevated prevalence of depression and anxiety throughout the first year after the diagnosis.


Subject(s)
Anxiety Disorders , Depressive Disorder , COVID-19
20.
Trop Med Infect Dis ; 8(1)2023 Jan 03.
Article in English | MEDLINE | ID: covidwho-2231027

ABSTRACT

BACKGROUNDS: Advanced schistosomiasis is the late stage of schistosomiasis, seriously jeopardizing the quality of life or lifetime of infected people. This study aimed to develop a nomogram for predicting mortality of patients with advanced schistosomiasis japonica, taking Dongzhi County of China as a case study. METHOD: Data of patients with advanced schistosomiasis japonica were collected from Dongzhi Schistosomiasis Hospital from January 2019 to July 2022. Data of patients were randomly divided into a training set and validation set with a ratio of 7:3. Candidate variables, including survival outcomes, demographics, clinical features, laboratory examinations, and ultrasound examinations, were analyzed and selected by LASSO logistic regression for the nomogram. The performance of the nomogram was assessed by concordance index (C-index), sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). The calibration of the nomogram was evaluated by the calibration plots, while clinical benefit was evaluated by decision curve and clinical impact curve analysis. RESULTS: A total of 628 patients were included in the final analysis. Atrophy of the right liver, creatinine, ascites level III, N-terminal procollagen III peptide, and high-density lipoprotein were selected as parameters for the nomogram model. The C-index, sensitivity, specificity, PPV, and NPV of the nomogram were 0.97 (95% [CI]: [0.95-0.99]), 0.78 (95% [CI]: [0.64-0.87]), 0.97 (95% [CI]: [0.94-0.98]), 0.78 (95% [CI]: [0.64-0.87]), 0.97 (95% [CI]: [0.94-0.98]) in the training set; and 0.98 (95% [CI]: [0.94-0.99]), 0.86 (95% [CI]: [0.64-0.96]), 0.97 (95% [CI]: [0.93-0.99]), 0.79 (95% [CI]: [0.57-0.92]), 0.98 (95% [CI]: [0.94-0.99]) in the validation set, respectively. The calibration curves showed that the model fitted well between the prediction and actual observation in both the training set and validation set. The decision and the clinical impact curves showed that the nomogram had good clinical use for discriminating patients with high risk of death. CONCLUSIONS: A nomogram was developed to predict prognosis of advanced schistosomiasis. It could guide clinical staff or policy makers to formulate intervention strategies or efficiently allocate resources against advanced schistosomiasis.

SELECTION OF CITATIONS
SEARCH DETAIL